Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea.

نویسندگان

  • Susannah K S Thorpe
  • Robin H Crompton
چکیده

The Asian apes, more than any other, are restricted to an arboreal habitat. They are consequently an important model in the interpretation of the morphological commonalities of the apes, which are locomotor features associated with arboreal living. This paper presents a detailed analysis of orangutan positional behavior for all age-sex categories and during a complete range of behavioral contexts, following standardized positional mode descriptions proposed by Hunt et al. ([1996] Primates 37:363-387). This paper shows that orangutan positional behavior is highly complex, representing a diverse spectrum of positional modes. Overall, all orthograde and pronograde suspensory postures are exhibited less frequently in the present study than previously reported. Orthograde suspensory locomotion is also exhibited less often, whereas pronograde and orthograde compressive locomotor modes are observed more frequently. Given the complexity of orangutan positional behavior demonstrated by this study, it is likely that differences in positional behavior between studies reflect differences in the interplay between the complex array of variables, which were shown to influence orangutan positional behavior (Thorpe and Crompton 2005 Am. J. Phys. Anthropol. 127:58-78). With the exception of pronograde suspensory posture and locomotion, orangutan positional behavior is similar to that of the African apes, and in particular, lowland gorillas. This study suggests that it is orthogrady in general, rather than forelimb suspend specifically, that characterizes the positional behavior of hominoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forest structure and support availability influence orangutan locomotion in Sumatra and Borneo.

The influence of habitat structure and support availability on support use is an important aspect of understanding locomotor behavior in arboreal primates. We compared habitat structure and support availability in three orangutan study sites-two on Sumatra (Pongo abelii) in the dry-lowland forest of Ketambe and peat swamp forest of Suaq Balimbing, and one on Borneo (Pongo pygmaeus wurmbii) in t...

متن کامل

Orangutans use compliant branches to lower the energetic cost of locomotion.

Within the forest canopy, the shortest gaps between tree crowns lie between slender terminal branches. While the compliance of these supports has previously been shown to increase the energetic cost of gap crossing in arboreal animals (e.g. Alexander 1991 Z. Morphol. Anthropol. 78, 315-320; Demes et al. 1995 Am. J. Phys. Anthropol. 96, 419-429), field observations suggest that some primates may...

متن کامل

The ontogeny of talo-crural appositional articular morphology among catarrhine taxa: adult shape reflects substrate use.

The upper ankle joint forms a single articular plane between organism and the foot and substrate. Singular warp analysis shows that its shape reflects substrate use. This study explores whether the differences in shape are genetic with a developmental trajectory evident during ontogeny or epigenetic and the result of substrate use by the individual. A total of 418 matched distal tibial and prox...

متن کامل

Factors Affecting the Compliance and Sway Properties of Tree Branches Used by the Sumatran Orangutan (Pongo abelii)

The tropical arboreal environment is a mechanically complex and varied habitat. Arboreal inhabitants must adapt to changes in the compliance and stability of supports when moving around trees. Because the orangutan is the largest habitual arboreal inhabitant, it is unusually susceptible to branch compliance and stability and therefore represents a unique animal model to help investigate how ani...

متن کامل

Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development

Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physical anthropology

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2006